Product Description
EPM Series permanent Magnet VSD Screw Compressor
Energy can represent over 70% of a compressor’s lifecycle costs. Generating compressed air can account for more than 40% of a plant’s total electricity bill. Most production environments have a fluctuating air demand depending on the time of day, week, or even months per year. With Adekom’s VSD technology monitoring compressed air requirements, fluctuating demand no longer equals high energy costs.
ADEKOM’s latest technology of Variable Speed Drive (VSD) CHINAMFG which adopts permanent magnet motor and controlled by frequency inverter is having the following features:VSD compressor precisely follows the varying air demand by adjusting motor rotation speed, this prevents unnecessary full load high current operation and energy consumed during unload operation of standard base load compressor;By adopting modern High Efficiency Interior Permanent Magnet (IPM) Motor Drive, CHINAMFG LM series VSD compressor is having 6-7% more energy efficient than standard VSD CHINAMFG available in the market.;Especially under low loading running, optimal control range of IPM motor plays a significant role of superior energy saving effect.Thanks to the high energy efficiency of IPM motor under wide operating range, this inverter controlled variable speed drive CHINAMFG can achieve energy saving of 35% in comparing with standard base load compressor.
Comparative Advantages
· VSD compressor precisely follows the varying air demand by adjusting motor rotation speed, this prevents unnecessary full load high current operation and energy consumed during unload operation.
· By adopting High Efficiency oil-cooled Permanent Magnet motor, this IPM VSD compressor is having 6-7% more energy efficient than standard VSD CHINAMFG available in the market.
· Especially under low loading operation, optimal control range of IPM motor plays a significant role of superior energy saving effect.
· The oil-cooled permanent magnet motor is designed with double-layer housing. Lubricating oil of compressor is circulating to cool down the motor. Low temperature operation of the motor can be ensured in full frequency range, preventing the system from demagnetizing at high temperature and greatly reducing the motor power consumption to achieve real energy saving.
· Thanks to the high efficiency IPM motor under wide operating range, our customers can save 35% on their energy costs compared to fix speed compressors.
· Oil-cooled permanent magnet motor is designed according to IP65 protection standard, this good waterproof and dustproof insulation, effectively improve services life of the motor.
ADEKOM (ASIA PACIFIC) LIMITED founded in the late 90’s is a specialized air/gas compressors and treatment system manufacturer with headquarter in Hong Kong. Its partners located in Vicenza, Italy and Germering, Germany are the world’s leading manufacturers with global recognition and experience in designing, manufacturing and marketing of rotary screw air/gas compressors for decades. QUALITY, RELIABILITY and ENERGY EFFICIENCY have been the main objectives of serving customers all over the world. CHINAMFG follows the company core of its European partners, is committed to the research & development, quality assurance and satisfaction of customers’ needs. Today, what CHINAMFG can do is not just to supply the best products to the market, but to provide THE TOTAL SOLUTION TO YOUR NEEDS!
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air-Cooled/Water-Cooled |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Type: | VSD Screw Air Compressor |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-12-18
China supplier Oro Kompresorius Part AC Screw Portable Oilless Small Copper 220V Industrial Rotary Used Car Mini Single Movable Max Dental Piston Air Pump Compressor 12v air compressor
Product Description
| Power: | 600w | Voltage: | 220V |
| Exhaust Pressure: | 0.8Mpa | Current: | 3.0A |
| Frequency: | 50HZ | Revolving Speed: | 1420rpm |
| Volume of Gas Storage Tank: | 9L | Cylinder: | 2x55mm |
Scope of application:
Using for Pushing Pneumatic Nail Gun, Air Screw , Spray Painting Gun to work, also use to miniature instrument, blowing dust, Air inflation for small car and so on.
Product Feature:
- High Power, high efficiency, low energy, high reliability.
- Piston Ring: New ECO circle, low friction coefficient, Auto lubricating system.
- Cylinder Liner: Surface hardening, deplete hardness, Accelerate the heat transfer, long using time.
- Suction and exhaust valve: Using advanced foreign technology.
- Multiple Pressure: Overload protection
Oilless Air Compressor Featuers:
1.Super Silent
Super low noise.The output air pressure is stable without fluctuations, reducing noise pollution.
2. Safety
If the voltage or current cause the machine overheat, it will automatically shut down to protect from burnout.
3. Automatic control
Pressure switch automatically controls the start and stop of the machine.
4. Adjustable air pressure
The air pressure can be adjusted to meet the needs of different equipment usage.
5. Save human power
Switch on the air compressor can work normally & automatically. It is easy to operate and does not need human to be on duty.
6. Easy maintenance
No need to add any lubricant, easy maintenance after purchase.
Parts Features
1.Heavy cast iron body: heavy load, long stroke, low fuel consumption, low noise
2.Cylinder: made of high-grade cast iron, strength, good lubricity, wall by the fine honing, wear-resistant, durable
3.Piston ring: good elasticity, excellent wear resistance, low oil consumption, not easy to make the valve group carbon deposition and loss of oil to burn the crankshaft and connecting rod.
4.The crankshaft, connecting rod, piston: well balanced, wear resistance, high strength, smooth running balance.
5.High reliable and durable valve; strong aluminum alloy body, light and heat.
6.The motor provides reliable power, low voltage start up and running performance strong fan cooled motor and body; special shock proof design.
7.Double nozzles, were used to direct the exhaust and pressure exhaust; pressure switch with push button, safe and convenient
8.Oil free,silent,protect-environment,suitable for dental use.
Frequency Asked Question
1.Are you the manufacturer or trading company?
We are the manufacturer.
2.Where is your factory?
It is located in HangZhou City,ZHangZhoug Province,China.
3.What’s the terms of trade?
FOB,CFR,CIF or EXW are all acceptable.
4.What’s the terms of payment?
T/T,L/C at sight or cash.
5.What’s the lead time?
We are the manufacturer.
It is located in HangZhou City,ZHangZhoug Province,China.
FOB,CFR,CIF or EXW are all acceptable.
T/T,L/C at sight or cash.
In 15 days on receipt of deposit .
6.Do you accept sample order?
Yes,we accept.
7.What about the cost of sample?
You have to pay the freight charge.But the cost of product could be refundable,if you will purchase 1x20GP container in the future.
Yes,we accept.
You have to pay the freight charge.But the cost of product could be refundable,if you will purchase 1x20GP container in the future.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Duplex Arrangement |
| Cylinder Position: | Horizontal |
| Structure Type: | Open Type |
| Compress Level: | Single-Stage |
| Samples: |
US$ 42/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How are air compressors utilized in pneumatic tools?
Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:
Power Source:
Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.
Air Pressure Regulation:
Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.
Air Volume and Flow:
Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.
Tool Actuation:
Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.
Versatility:
One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.
Portability:
Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.
Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-12-18
China wholesaler Universal Air Conditioning System Parking DC 12V Air Electric AC Compressor for Cars Sedan Trucks with high quality
Product Description
Product Description
Specialized in air conditioning parts, CHINAMFG provide you kinds of AC parts.
If you need other types, please provide OE number, photos, so our salesmen will check it.
|
Class |
New |
Voltage |
12V/24V/48V/72V/96V/144V/360V/480V |
|
Power |
Electric |
Material |
Aluminium |
|
OEM No. |
Universal |
Clutch |
OEM |
|
Fitment |
|||
|
For electric vehicles and fuel cars’ modification
|
|||
We have many types of air conditioners for your option, including rooftop type, split type, invisible type and so on.
Company Profile
Quality, responsibility and innovation, have always been what CHINAMFG Environment Technology Co., Ltd. Pursues.
With standard workshops over 35, 000 square meters, our factory covers an area of 80 acres, with 235 employees and 23 engineers. Concentrating on air solutions, we manufacture parking air conditioners, parking heaters, scroll and rotary compressors, DC generators and so on.
To ensure quality, we are equipped with a complete set of advanced equipment, including CNC machining, turning and milling compound machining, Mitutoyo three-coordinate measuring instrument, Flip-type impregnation equipment, automatic ultrasonic cleaning machine. Meanwhile advanced automotive electric air conditioning system environment simulation laboratories have been established. All products will go through 100% test according to ISO9001 and CE standards before launching market.
Our research and development team provides customization and after-sales support. New products will be launched every couple of months, showing the best appearance and most reliable function, leading the trend of the industry.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Tech Support |
|---|---|
| Warranty: | 1 Year |
| Classification: | Variable Capacity |
| Job Classification: | Reciprocating |
| Transmission Power: | Turbine |
| Cooling Method: | Air-cooled |
| Samples: |
US$ 150/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2023-12-18
China Professional Wg1500139016 Air Condition Compressor for CHINAMFG CHINAMFG 12V 24V DC Air Conditioning Compressor air compressor for car
Product Description
WGAIR CONDITION COMPRESSOR for CHINAMFG CHINAMFG 12V 24V dc AIR CONDITIONING COMPRESSOR |
Product Description
High filtration performance (cleaning effect);Long life (large catch);
Durable vibration, high durability, no dust leakage;
Water resistance, will not block the entry of air,
simple and light loading and unloading.
Detailed Photos
The upper and lower covers of the air filter are made of Pu rubber with good elasticity, hydrolysis resistance, corrosion
resistance and safety. 100% seal can supply clean air to engine.
Packaging & Shipping
1. Our packing uses export wooden cases, plastic boxes, cartons or pallets. All the package are very strong, the wooden box is firmly bound, the package is covered with a waterproof film to prevent water or damage during transportation.
2. According to the quantity, we can use express delivery, air transportation or CHINAMFG transportation, automobile transportation, railway transportation, etc. we have our own freight forwarders, and we can also use the designated freight forwarders of customers, which can meet various delivery requirements of customers, such as EXW, FOB, CIF, etc.It can also be exported from many ports in China.
Company Profile
HangZhou CHINAMFG International Trade Co., Ltd. was established in 2003. It has been engaged in the export of auto parts and
construction machinery parts for 8 years. Our main business is to export truck parts and construction machinery parts to
Russia,Europe and Southeast Asia, such as SINOTRUK, Shaanqi, Xihu (West Lake) Dis., XCMG, Shantui, JAC, Cummins, JCB, caterpillar, Isuzu, Yanmar, lgmg, CHINAMFG The company has its own warehouse in HangZhou, covering an area of 2000 square meters, and has a lot of inventory,and has the ability to quickly collect and deliver accessories. We always adhere to the quality of products as the core, to serve customers for the purpose. Hope to be able to better communicate with friends from all over the world.
Our Advantages
The company ‘s goods are of good quality and exquieite packaging ,All filters passed 14 rigorous tests 100%.And have passed theaudit of many chinese qualification inspection institutions and obtained many certificates,so it ‘s very popular in every countries.All of our products have passed 14 strict tests and are of high quality, meeting the quality standards of various countries.
FAQ
1. who are we?
We are based in ZheJiang , China, start from 2013,sell to Mid East(50.00%),Eastern Europe(20.00%),Eastern Asia(10.00%),South America(7.00%),Southeast Asia(5.00%),Africa(4.00%),North America(3.00%),Domestic Market(00.00%). There are total about 11-50 people in our office.
2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;
3.what can you buy from us?
Heavy Truck Parts and Construction Machinery Parts/Filter/Turbocharger/Clutch Disc/Clutch Cover/Water Pump/Truck Chassis Parts
4. why should you buy from us not from other suppliers?
HangZhou CHINAMFG International Trade Co., Ltd. is located in HangZhou city, the capital of ZheJiang Province. Main products are heavy truck accessories, light truck parts, engineering machinery parts and so on. We have perfect service system.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 6 Months |
|---|---|
| Warranty: | 6 Months |
| Type: | Serpentine |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-12-16
China high quality Screw Air Compressor 110sdyt-18 18bar 16m3/Min 1110kw Mobile Mine Drilling Electromobility Screw air compressor parts
Product Description
Electrical Portable Screw Compressors – Two-stage screw compression – 18bar
Product Description
1. Complete variety series, many advantages:
Small size, light weight. Low noise. Stable and reliable performance. Long service life. Easy to maintain. Low maintenance costs.
2. Technical agglomeration, comprehensive performance of machinery:
This series of products are designed for engineering mines with
φ80-110mm bore drill, anchor drill, all kinds of pickaxes, rock drills, shotguns and all kinds of air sources.
Series of products focus on reliability, robust based on the optimized control system, greatly reducing the energy consumption of products;
The whole series of products adopt the national II/III/IV engine.
3. Close to the actual needs of users:
The complete series of products, the exhaust volume has been from small to large, which meets the needs of air mechanical and gas such as air -drifting machines such as pneumatic rock drills. There are diverse structures, suitable for different users. Low-quality, low investment costs.
Model and technical parameters
| Model | 90SDYT-18 | 110SDYT-18 | 132SDYT-18 | 185SDYT-18 | 220SDYT-18 | 250SDYT-18 | 280SDYT-18 | 315SDYT-18 |
| Air End | Two Stage Compression | |||||||
| Type | 4 wheel | |||||||
| Motor Protection Class |
IP54 | |||||||
| Rated Pressure | 18 bar | |||||||
| Rated FAD | 13 m³/min | 16 m³/min | 21 m³/min | 26 m³/min | 28.8 m³/min | 32.8 m³/min | 36.8 m³/min | 42 m³/min |
| Motor Power | 90 kW | 110 kW | 132 kW | 185 kW | 220 kW | 250 kW | 280 kW Variable frequency |
315 kW Variable frequency |
| Weight | 2350 kg | 2650 kg | 2900 kg | 3800 kg | 5550 kg | 5800 kg | 6050 kg | 6350 kg |
| Dimensions (LxWxH) |
3050×1620 ×2090 mm |
3250×1760×2175 mm | 3680×1920 ×2375 mm |
4180×2080×2500 mm | ||||
FAQ
Q1: What’s your delivery time?
A: 15 days to produce, within 3 days if in stock.
Q2: What’s methods of payments are accepted?
A: We agree T/T ,L/C , West Union ,Money Gram ,Paypal.
Q3: What about the shipments and package?
A: 40′ container for 2 sets, 20′ container for 1 set,
Machine in nude packing, spare parts in standard export wooden box.
Q4: Have you got any certificate?
A:We have got ISO,CE certificate.
Q5: How to control the quality?
A: We will control the quality by ISO and CE requests.
Q6: Do you have after-sale service and warranty service ?
A: Yes, we have.We can supply instruction for operation and maintenance.If necessary, we can send our engineer to repair the machine in your company.
Warranty is 1 year for the machine.
Q7: Can I trust your company ?
A: Our company has been certificated by Chinese government,and verified by SGS Inspection Company. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online |
|---|---|
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2023-12-16
China Standard Oxygen Gas Filling Compressor with Water Cooling and Air Cooling supplier
Product Description
Oil Free Oxygen Compressor Oxygen Booster for filling Cylinder
An oxygen compressor is a compressor that is used to pressurize oxygen and deliver or store it.
There are 2 uses for medical oxygen compressors. One is that the hospital’s PSA oxygen generator needs to be pressurized to supply various wards and operating rooms, providing 7-10 kg of line pressure.and the other is that PSA oxygen needs to be stored. The high-pressure container is convenient for mobile use,and the storage pressure is generally 100 barg, 150 barg,200 barg,or higher 300 barg pressure.
Features of oxygen compressor:
1. Completely 100% oil free, no oil required (depending on the specific model)
2. Oxygen for medical PSA oxygen gas source
3. NO pollution, keep the same purity into the gas
4. RELIABLE and high quality.
5. Low maintenance cost, simple operation
6. 4000 hours piston ring working life under low pressure conditions, 1500-2000 hours working life under high pressure conditions
7 .CE approved to meet the requirements of the EU market
8. According to the customer’s specific working conditions. the compressor is designed for single machine compression,two-stage compression, three-stage compression and four-stage compression.
9. Low speed, long life,average speed 260-350RPM.
10. Low noise, average noise below 75dB, can work quietly in the medical field
11. continuous continuous heavy-duty operation. can run stably for 24 hours without stopping
12. Each stage has an interstage safety valve. lf the stage is overpressured, the safety valve will take off and release the overpressure gas to ensure the stable operation of the compressor.
13. Each level has a temperature controller. lf the temperature between the stages exceeds the standard. the temperature display will sound and light alarm.
Oxygen compressor parameters
| Model | Working Medium |
Suction pressure (Mpa,Psig) |
Discharge Pressure | Motor (KW) |
Flow rate (Nm3/hr) | Voltage | Cooling way | Weight (kgs) | Dimension (mm) |
| ZOY-15/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 15 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 780 | 1500*950*1500 |
| ZOY-16/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 16 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 780 | 1500*950*1500 |
| ZOY-20/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 20 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 780 | 1500*950*1500 |
| ZOY-25/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 25 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 960 | 1500*950*1500 |
| ZOY-30/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 30 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 960 | 1500*950*1500 |
| ZOY-35/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 11 | 35 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 960 | 1500*950*1500 |
| ZOY-40/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 15 | 40 | 220V/380V/415V/440V 50/60HZ |
Air cooling | 1000 | 1500*950*1500 |
| ZOY-50/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 15 | 50 | 220V/380V/415V/440V 50/60HZ |
water cooling | 1000 | 1500*950*1500 |
| ZOY-60/4-150 | oxygen | 0.3-0.4,40-60 | 15,2150 | 18.5 | 60 | 220V/380V/415V/440V 50/60HZ |
water cooling | 1050 | 1500*950*1500 |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | on Line |
|---|---|
| Principle: | Reciprocating Compressor |
| Performance: | Low Noise |
| Mute: | Not Mute |
| Lubrication Style: | Oil-free |
| Drive Mode: | Electric |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2023-12-15
China best Low Prices 185 Cfm Air Compressor 80 Gallon Compressor 10 Bar Industrial Air Compressor for Water Well Drilling Rig From China supplier
Product Description
low prices 185 cfm air compressor 80 gallon compressor 10 bar industrial air compressor for water well drilling rig from china
Product Description
1. From customers’ feedback, CHINAMFG air compressor is the most cost-effective brand, with stable quality and competitive price, acceptable by most customers.
2. The air displacement is 6%-10% bigger than other brand, so the drilling speed is more quick, also more stable when drilling hard rock.
3. To be honest, after 1-2 years using, the head temperature will be easily rise, so when the outdoor temperature more than 30 Degrees Celsius,it will stop work, but the CHINAMFG brand without this problem, that also is the main reason we choose it.
4. For the CHINAMFG brand, their air compressor not only used for drilling machine, also for mining machine, also is the first manufacturer that can produce the high-pressure air compressor in China.
Besides the CHINAMFG brand air compressor, we can also provide Kaishan, HongHangZhouan, Sullair, Liutech, CHINAMFG brand.
Mian Technical Machine
| Model | Rated FAD | Rated Pressure | Weight | Dimension |
| S60T | 18 m3/min | 18 bar | 3055 kg | 3220*1670*2150 mm |
| S85T | 24 m3/min | 22 bar | 3450 kg | 3560*1830*2100 mm |
| S95T | 29 m3/min | 24 bar | 4300 kg | 3950*2000*2550 mm |
| S98T | 30 m3/min | 24 bar | 4350 kg | 3950*2000*2550 mm |
| S100T | 31 m3/min | 25 bar | 4350 kg | 3950*2000*2550 mm |
| S125D | 36 m3/min | 30 bar | 5500 kg | 4220*2000*2300 mm |
Application
Air compressor is commonly used in water well drilling, rock drilling, mine drilling areas and so on. Air compressor is the main body to provide air source power for percussive water well drilling rig, provide certain air volume and pressure for DTH drilling rig.
Product Photo
|
|
|
| S60T | S95T |
|
|
|
| S100T | S125D |
Product Show
Product Detail
PRODUCT ADVANTAGES
According to your local market needs and budget, we can design the right machine for you.
| Air-end Professional customized 2 stage screw air-end. Lower energy consumption, longer life. Lower maintenance cost. |
Controller Clear view of parameters display and indicator lights.With data diagnostic functions and alarm indicators,safe & reliable. |
| Full opening doors on both left & right side Larger operating space.Easy service access and high efficiency for time saving.Used oil or coolant drained from centralized chassis point for environment protection.Reinforced heavy duty & durable undercarriage design. |
International Famous brand diesel engine Top of the line manufacturing process,reliable & durable.More powerful engine with fuel adaptability.More powerful and better responding in lower speed.Integrated design with less failure rate and for easy maintenance. |
Mass Production
We can provide custom rebar bending machines according to customer requirements such as work capacity, weight, shape, color, voltage, etc.
Currently, we has advanced production technology and advanced product testing equipment, scientific and sound corporate management, and strictly operates in accordance with the ISO/TS9001:2008 international quality standard management system, strict quality clearance, and provides customers with qualified products.In the past 10 years, our products have been sold to 39 countries and regions.With the accumulation of customers, our export volume is growing at an average annual rate of 36%.
Our Partenres
Trust us, join us and give you the best experience.
GOOD REVIEWS
Even in the current situation, many customers are unable to visit our factory, but there are still many partners who choose to trust us, and the praise of customers recognizes our strength.
Packing
FAQ
Q1: – Can i request customize service?
A: Yes, dear sir, we can also customize voltage, material, colour, nameplate etc., and meet your other special request.
Q2: – What is the advantage of your factory?
A: Here we’re your “Chinese Partner”, accurate market sharing, reliable investment suggestion, select right machine, quick problem solver, reliable after-sales service, minimize purchasing risk.
Q3: – What service do you supply after order?
A: Your order will be fully tracked including production, professional quality control, strong logistics teamwork working and experienced customs documents preparation, you can get One-stop service from us.
Q4: – How to solve the after-sales problem?
A: You can send us a video or pictures to explain the problem, later we can give you a solution to solve it, if it is our responsibility, we will 100% in charge of it and try our best to make you satisfied, we pursue long term cooperation always.
| After-sales Service: | Online |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-12-15
China high quality CHINAMFG Permanent Magnet Synchronous Pm VSD Rotary Screw Air Compressor with Converter for Concrete Production air compressor for car
Product Description
DM Series Permanent Magnet Variable Frequency Screw Compressor
Permanent magnet Direct Screw Air End
It is a unique new design, which combines the permanent magnet motor and the speed control frequency converter. It couples with the high quality air end, which shows the advanced CHINAMFG technology.
It can provide the unique energy-saving effect and super reliability. There is no motor bearing. The screwing compressor is driven by the permanent magnet motor. There is no consider about the attrition of the gear,pulley,belt, coupling,shaft seal and the moving parts, which leads to the leak or change parts. Meanwhile, it not need to consider the calibritionfor the gear coaxial seal. The high-effect converter technique will reduce the operating costs prodigiously, which can provide you a real excellent technology.
| Model No. | Power | Max. | Capacity | Cooling | Driven | Starting | Weight(Kg) | Air | Dimension (mm) |
| (kw/hp) | Pressure | (m3/min) | Method | System | Outlet | ||||
| DM-10A | 7.5/10 | 8 bar | 1.2 | Oil | Direct | Frequency | 190 | G3/4″ | 895*590*970 |
| DM-20A | 15/20 | 7bar | 2.4 | 236 | G3/4″ | 1062*690*1000 | |||
| 8 bar | 2.3 | ||||||||
| 10 bar | 2.2 | ||||||||
| DM-30A | 22/30 | 7bar | 4.1 | 370 | G1″ | 1330*830*1265 | |||
| 8 bar | 3.6 | ||||||||
| 10 bar | 3.2 | ||||||||
| DM-40A | 30/40 | 7bar | 5.7 | 450 | G1″ | 1330*830*1265 | |||
| 8 bar | 5.2 | ||||||||
| 10 bar | / | ||||||||
| DM-50A | 37/50 | 8 bar | 6.5 | 655 | G1 1/2″ | 1500*940*1415 | |||
| 10 bar | 5.6 | ||||||||
| 13 bar | 4.9 | ||||||||
| DM-60A | 45/60 | 7 bar | 8.1 | 730 | G1 1/2″ | 1500*940*1415 | |||
| 8 bar | 7.5 | ||||||||
| 13bar | 5.9 | ||||||||
| DM-75A | 55/75 | 7 bar | 10.3 | 1050 | G2″ | 1600*1060*1470 | |||
| 8 bar | 9.5 | ||||||||
| 13 bar | 7.8 | ||||||||
| DM-100A | 75/100 | 7 bar | 13 | Air | 1291 | G2″ | 2000*1120*1590 | ||
| 8 bar | 12.8 | ||||||||
| 10 bar | 11 | ||||||||
| 13 bar | 9.5 | ||||||||
| DM-125A | 90/125 | 7 bar | 16.33 | 1421 | G2″ | 2000*1120*1590 | |||
| 8 bar | 13.65 | ||||||||
| 10 bar | 14 | ||||||||
| 13 bar | 12.5 | ||||||||
| DM-150A | 110/150 | 7 bar | 20.8 | 1970 | DN65 | 2400*1630*1980 | |||
| 8 bar | 19.6 | ||||||||
| 10 bar | 17.8 | ||||||||
| 13 bar | 15.5 | ||||||||
| DM-175A | 132/175 | 7 bar | 24.1 | 2120 | DN65 | 2400*1630*1980 | |||
| 8 bar | 23.2 | ||||||||
| 10 bar | 19.5 | ||||||||
| 13 bar | 17 | ||||||||
| DM-220A | 160/220 | 7 bar | 28.5 | 2650 | DN80 | 2600*1700*1980 | |||
| 8 bar | 27.5 | ||||||||
| 10 bar | 23 | ||||||||
| 13 bar | 20 | ||||||||
| DM-250A | 185/250 | 7 bar | 33.2 | 2850 | DN80 | 2600*1700*1980 | |||
| 8 bar | 31.2 | ||||||||
| 10 bar | 27.5 | ||||||||
| 13 bar | 25.8 | ||||||||
| Motor Efficiency Class: Ultraefficient/IE3/IE2 as per your required Motor Protection Class: IP23/IP54/IP55 or as per your required Certification: CE/ISO9001/TUV/UL/SGS/ASME Voltage: 380V/3PH/50HZ/60HZ, 220V/3PH/50HZ/60HZ, 400V/3PH/50HZ/60HZ, 440V/3PH/50HZ/60HZ, 415V/3PH/50HZ/60HZ, 230V/3PH/50HZ/60HZ, dual voltage is also ok |
|||||||||
1.DHH Permanent Magnet VSD Screw Compressor Energy-saving technology makes it an indispensable part in your factory.
Features
Motor Power:7.5~55(Kw)
Air Delivery: 0.7~10.3(m3/min)
Working Pressure:7.0~13.0(Bar)
Cooling Method: Oil cooling
Motor protection class: IP65
High-efficiency, One-piece structure
Motor Power:75~185(Kw)
Air Delivery:13~33.2(m3/min)
Working Pressure:7.0~13.0(Bar)
Cooling Method: Ail cooling
Motor protection class: IP54
High-efficiency, Significant Energy saving
Certificate
Project case
Shipping and packaging
Customer feedback
About us
Dehaha Compressor was founded in 1996 with over 150 skilled employees and more than 25 R&D engineers’ teams.We focus on the research & develop, manufacture and energy-saving solutions of screw air compressor to create value for customers and society.
Dehaha opened to the world since 2015, and now we have a foreign trade department with more than dozens people, serving customers around the world 24 hours. We have sales representatives who can speak English, Spanish, Portuguese, French,and Russian which makes it easier for our clients from all over the world to interact and negotiate with us.now our valued customers are over 130 countries. Germany Standard and 13 years exporting experience help us won more than 50 loyal overseas agents.
Dehaha continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly to reach the business principle “Energy Saving First, Mutual Value Shared”. The production line of CHINAMFG is consist of screw air compressor from 5.5KW to 550KW, oil free air compressor, portable air compressor, permanent magnet variable frequency air compressor, high pressure air compressor and compressed air purification equipment, etc.
Dehaha mission is to be a world-renowned high-end brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff. Committed to offer our customers a silent and energy-saving manufactured products.
Our services
1.24/7 after sales service support in different languages.
2.Follow up the feedback of products in 2 months interval by email or call.
3.Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4.Technical training for customers in DEHAHA air compressor factory or working site.
5.Plenty of original spare parts with proven quality are all available from our central stocks in ZheJiang and all distributors’depots.
6.All kinds of technical documents in different languages.
Why choose us
FAQ
1.Why customer choose us?
DEHAHA COMPRESSOR ZheJiang CO.,LTD.with 24 years old history,we are specialized in Rotary Screw Air Compressor.Germany Standard and 13 years exporting experience help us won more than 30 loyal foreign agents.We warmly welcome your small trial order for quality or market test.
2.Are you a manufacturer or trading company?
We are professional manufacturer with big modern factory in HangZhou,China,with professional design team.Both OEM & ODM service can be accepted.
3.Where is your factory located? How can I visit there?
Our factory is located in HangZhou City, ZheJiang Province, China. We can pick up you from ZheJiang , it’s about 1 hour from ZheJiang Xihu (West Lake) Dis. Airport to our factory. Warmly welcome to visit us!
4.What’s your delivery time?
380V 50HZ we can delivery the goods within 14 days. Other electricity or other color we will delivery within 22 days,if urgently order,pls contact our sales in advance.
5.How long is your air compressor warranty?
One year for the whole machine and 2 years for screw air end, except consumable spare parts and we can provide some spare parts of the machines.
6.How does your factory do regarding quality control?
Quality is everything. we always attach great importance to quality controlling from the very beginning to the very end. Our factory has gained ISO9001:2015 authentication and CE certificate.
7.How long could your air compressor be used?
Generally, more than 10 years.
8. What’s payment term?
T/T,L/C,D/P,Western Union,Paypal,Credit Card,and etc.Also we could accept USD, RMB, Euro and other currency.
9.How about your customer service?
24 hours on-line service available.48 hours problem solved promise.
10.How about your after-sales service?
(1) Provide customers with installation and commissioning online instructions.
(2) Well-trained engineers available to overseas service.
(3) CHINAMFG agents and after service available.
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Motor |
| Cylinder Position: | Vertical |
| Structure Type: | Semi-Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-12-14
China Best Sales Energy Saving Oil Free Water Lubricated Permanent Magnetic Variable Frequency Rotary Screw Air Compressor/Industrial AC Power Stationary Oilless Air Compressor manufacturer
Product Description
Oilless High Pressure Rotary Portable Mini Industrial Used Movable Single Max Dental AC Oil Screw Part Parts Piston Free Air Pump Compressor
OIL-INJECTED FIXED SPEED COMPRESSOR
| Model | Motor Power kW / hp |
Free Air Delivery m3/min |
Noise Level dB(A) |
Dimension L * W * H mm |
Weight Kg |
|||
| 7barg | 8barg | 10barg | 13barg | |||||
| CWD7 | 7.5 / 10 | 1.3 | 1.2 | 1.0 | 0.8 | 66 | 880*700*920 | 240 |
| CWD11 | 11 / 15 | 1.7 | 1.6 | 1.4 | 1.2 | 68 | 1080*750*1000 | 400 |
| CWD15 | 15 / 20 | 2.5 | 2.3 | 2.1 | 1.9 | 68 | 1080*750*1000 | 420 |
| CWD18 | 18.5 / 25 | 3.2 | 3.0 | 2.7 | 2.4 | 68 | 1280*850*1160 | 550 |
| CWD22 | 22 / 30 | 3.8 | 3.6 | 3.2 | 2.8 | 68 | 1280*850*1160 | 580 |
| CWD30 | 30 / 40 | 5.3 | 5.0 | 4.5 | 4.0 | 68 | 1280*850*1160 | 600 |
| CWD37 | 37 / 50 | 6.8 | 6.2 | 5.6 | 5.0 | 68 | 1400*1000*1290 | 800 |
| CWD45 | 45 / 60 | 8.0 | 7.3 | 7.0 | 5.9 | 72 | 1400*1000*1290 | 850 |
| CWD55 | 55 / 75 | 10.1 | 9.5 | 8.7 | 7.8 | 72 | 1800*1230*1570 | 1660 |
| CWD75 | 75 / 100 | 13.6 | 12.8 | 12.3 | 10.2 | 72 | 1800*1230*1570 | 1800 |
| CWD90 | 90 / 125 | 16.2 | 15.5 | 14.0 | 12.5 | 72 | 1800*1230*1570 | 1900 |
| CWD110 | 110 / 150 | 21.2 | 19.8 | 17.8 | 15.5 | 72 | 2400*1470*1840 | 2500 |
| CWD132 | 132 / 180 | 24.5 | 23.2 | 20.5 | 17.8 | 75 | 2400*1470*1840 | 2700 |
| CWD160 | 160 / 215 | 28.8 | 27.8 | 25.0 | 22.4 | 75 | 2400*1470*1840 | 3000 |
| CWD185 | 185 / 250 | 32.5 | 31.2 | 28.0 | 25.8 | 75 | 3150*1980*2150 | 3500 |
| CWD200 | 200 / 270 | 36.0 | 34.3 | 30.5 | 28.0 | 82 | 3150*1980*2150 | 4000 |
| CWD250 | 250 / 350 | 43.0 | 41.5 | 38.2 | 34.9 | 82 | 3150*1980*2150 | 4500 |
| CWD315 | 315 / 400 | 51.0 | 50.2 | 44.5 | 39.5 | 82 | 3150*1980*2150 | 6000 |
| CWD355 | 355 / 450 | 64.0 | 61.0 | 56.5 | 49.0 | 84 | 3150*1980*2150 | 6500 |
| CWD400 | 400 / 500 | 71.2 | 68.1 | 62.8 | 52.2 | 84 | 3150*1980*2150 | 7200 |
| Model | Motor Power kW / hp |
Free Air Delivery m3/min |
Noise Level dB(A) |
Dimension L * W * H mm |
Weight Kg |
|||
| 7barg | 8barg | 10barg | 13barg | |||||
| CWD7 PM | 7.5 / 10 | 1.3 | 1.2 | 1.0 | 0.8 | 66 | 760*700*920 | 200 |
| CWD11 PM | 11 / 15 | 1.7 | 1.6 | 1.4 | 1.2 | 68 | 980*750*1000 | 350 |
| CWD15 PM | 15 / 20 | 2.5 | 2.3 | 2.1 | 1.9 | 68 | 980*750*1000 | 360 |
| CWD18 PM | 18.5 / 25 | 3.2 | 3.0 | 2.7 | 2.4 | 68 | 1120*850*1160 | 500 |
| CWD22 PM | 22 / 30 | 3.8 | 3.6 | 3.2 | 2.8 | 68 | 1120*850*1160 | 520 |
| CWD30 PM | 30 / 40 | 5.3 | 5.0 | 4.5 | 4.0 | 68 | 1120*850*1160 | 550 |
| CWD37 PM | 37 / 50 | 6.8 | 6.2 | 5.6 | 5.0 | 68 | 1280*1000*1290 | 750 |
| CWD45 PM | 45 / 60 | 8.0 | 7.3 | 7.0 | 5.9 | 72 | 1280*1000*1290 | 780 |
| CWD55 PM | 55 / 75 | 10.1 | 9.5 | 8.7 | 7.8 | 72 | 1800*1230*1570 | 1600 |
| CWD75 PM | 75 / 100 | 13.6 | 12.8 | 12.3 | 10.2 | 72 | 1800*1230*1570 | 1800 |
| CWD90 PM | 90 / 125 | 16.2 | 15.5 | 14.0 | 12.5 | 72 | 1800*1230*1570 | 1900 |
| CWD110 PM | 110 / 150 | 21.2 | 19.8 | 17.8 | 15.5 | 72 | 2400*1470*1840 | 2500 |
| CWD132 PM | 132 / 180 | 24.5 | 23.2 | 20.5 | 17.8 | 75 | 2400*1470*1840 | 2700 |
| CWD160 PM | 160 / 215 | 28.8 | 27.8 | 25.0 | 22.4 | 75 | 2400*1470*1840 | 3000 |
| CWD185 PM | 185 / 250 | 32.5 | 31.2 | 28.0 | 25.8 | 75 | 3150*1980*2150 | 3500 |
| CWD200 PM | 200 / 270 | 36.0 | 34.3 | 30.5 | 28.0 | 82 | 3150*1980*2150 | 4000 |
| CWD250 PM | 250 / 350 | 43.0 | 41.5 | 38.2 | 34.9 | 82 | 3150*1980*2150 | 4500 |
| CWD315 PM | 315 / 400 | 51.0 | 50.2 | 44.5 | 39.5 | 82 | 3150*1980*2150 | 6000 |
| CWD355 PM | 355 / 450 | 64.0 | 61.0 | 56.5 | 49.0 | 84 | 3150*1980*2150 | 6500 |
| CWD400 PM | 400 / 500 | 71.2 | 68.1 | 62.8 | 52.2 | 84 | 3150*1980*2150 | 7200 |
TWO-STAGE OIL-INJECTED COMPRESSOR
| Model | Motor Power kW / hp |
Free Air Delivery m3/min |
Noise Level dB(A) |
Dimension L * W * H mm |
Weight Kg |
|||
| 7barg | 8barg | 10barg | 13barg | |||||
| CWD15-2S | 15 / 20 | 3.0 | 2.9 | 2.4 | 2.2 | 68 | 1480*850*1180 | 780 |
| CWD18-2S | 18.5 / 25 | 3.6 | 3.5 | 2.9 | 2.5 | 68 | 1480*850*1180 | 800 |
| CWD22-2S | 22 / 30 | 4.2 | 4.1 | 3.5 | 3.2 | 68 | 1480*850*1180 | 820 |
| CWD30-2S | 30 / 40 | 6.5 | 6.4 | 4.9 | 4.2 | 68 | 1720*1110*1480 | 1080 |
| CWD37-2S | 37 / 50 | 7.2 | 7.1 | 6.3 | 5.4 | 68 | 1720*1110*1480 | 1100 |
| CWD45-2S | 45 / 60 | 9.8 | 9.7 | 7.8 | 6.5 | 72 | 1720*1110*1480 | 1120 |
| CWD55-2S | 55 / 75 | 12.8 | 12.5 | 9.6 | 8.6 | 72 | 2100*1350*1720 | 2080 |
| CWD75-2S | 75 / 100 | 17.5 | 16.5 | 12.5 | 11.2 | 72 | 2100*1350*1720 | 2100 |
| CWD90-2S | 90 / 125 | 20.8 | 19.8 | 16.9 | 14.3 | 72 | 2460*1700*1900 | 3280 |
| CWD110-2S | 110 / 150 | 24.5 | 23.5 | 19.7 | 17.6 | 72 | 2460*1700*1900 | 3480 |
| CWD132-2S | 132 / 180 | 30.0 | 28.0 | 23.5 | 19.8 | 75 | 2900*1800*2571 | 3980 |
| CWD160-2S | 160 / 215 | 34.5 | 33.6 | 30.0 | 23.8 | 75 | 2900*1800*2571 | 4280 |
| CWD185-2S | 185 / 250 | 41.0 | 38.4 | 32.5 | 28.6 | 75 | 3800*1980*2150 | 5450 |
| CWD200-2S | 200 / 270 | 44.6 | 43.0 | 38.5 | 32.8 | 82 | 3800*1980*2150 | 5600 |
| CWD220-2S | 220 / 300 | 48.6 | 47.0 | 41.0 | 38.0 | 82 | 3800*1980*2150 | 6500 |
| CWD250-2S | 250 / 350 | 55.0 | 54.0 | 46.0 | 40.0 | 82 | 3800*1980*2150 | 6600 |
- Unit measured according to ISO 1217, Annex C, Edition 4 (2009)
Reference conditions:
-Relative humidity 0%
-Absolute inlet pressure: 1 bar (a) (14.5 psi)
-Intake air temperature: 20°C, 68°F
- Noise level measured according to ISO 2151:2004, operation at max. operating pressure and max. speed; tolerance: ±3 dB(A)
- 2S-Two Stage
FAQ
1. Q: Are you a factory or trading company?
A: We are a factory.
2. Q: What’re your payments ?
A: T/T,Western Union,L/C etc.
3. Q: What about the package ?
A: Standard export plywood case or carton.
4. Q: How long is the warranty ?
A: According to international standards, products in standard operation is 1 year,except quick-wear part.
5. Q: The use of products have?
A: The pump can suck the peanut, pickles, tomato slurry, red sausage, chocolate, hops and syrup etc.
The pump can suck the paint, pigment, glue and adhesive etc.
The pump can suck various glazed slurries of tile, porcelain, brick and chinaware etc.
The pump can suck various toxin and flammable or volatility liquid etc.
The pump can suck various strong acid, alkali and corrosive liquid etc.
| After-sales Service: | Oversea Install Service |
|---|---|
| Warranty: | 3 |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2023-12-13
China Best Sales Amply Supply Driven Air Compressor with Reasonable Price with high quality
Product Description
Amply Supply Driven Air Compressor With Reasonable Price
Performance overview
1 Stable performance pump and motor to guarantee the longevity of air compressor.our motor are with thermal protection systerm.
2 100% factory tested at full pressure to make sure the reliability and safety of each product before shipment.
3 Metal cover for protecting the belt and wheels
4 Cast iron cylinder for strength and durability.
5 Spheroidal graphite cast iron crankshafts for maximum strength.
6 Low vibration for smooth operation.
7 Intelligent microcomputer controller available to make your air compressor much convenient, safety and intelligent.
Product parameter
| Model | 0.12/8 | 0.17/8 | 0.25/8 | 0.25/12.5 | 0.36/8 | 0.36/12.5 | 0.6/8 | 0.6/12.5 | 0.9/8 | 0.9/12.5 | 0.9/16 |
| Air Flow(m3) | 0.12 | 0.17 | 0.25 | 0.25 | 0.36 | 0.36 | 0.6 | 0.6 | 0.9 | 0.9 | 0.9 |
| Capacity(L) | 40 | 50 | 60 | 60 | 90 | 90 | 100 | 100 | 180 | 180 | 180 |
| Power(KW) | 1.1 | 1.5 | 2.2 | 2.2 | 3 | 3 | 4 | 4 | 7.5 | 7.5 | 7.5 |
| Voltage(V) | 220 | 220/380 | 220/380 | 220/380 | 220/380 | 220/380 | 380 | 380 | 380 | 380 | 390 |
| Air pressure(MPa) | 0.8 | 0.8 | 0.8 | 1.25 | 0.8 | 1.25 | 0.8 | 1.25 | 0.8 | 1.25 | 1.6 |
| Size(cm) |
Our Services
· Customizing the fans according to customers’ requirements.
· Delivery time for sample order: 1-5 days, for pallets order 7-20 days after receiving clear payment
· Warranty: 1 year for repairing or replacement of fans, customs duty & freight not included
FAQ
Q: How To Order ?
A: Step 1, please tell us what model and quantity you need;
Step 2, then we will make a PI for you to confirm the order details;
Step 3, when we confirmed everything, can arrange the payment;
Step 4, finally we deliver the goods within the stipulated time.
Q: What is the MOQ?
R: 100 pieces, accept sample.
Q: When you ship my order
R: Normally container need 15-40days, sample 3-7DAYS
Q: How about the quality guarantee period?
R: One year.
Q: Do you have the certificates?
R: Yes, we have passed the CE and CCC certification.
Q: Do you offer ODM & OEM service.
R: Yes, we can custom design for specific application.
Q: When can I get the quotation?
R:We usually quote within 24 hours after we get your inquiry. If you are urgent to get the price, please send the message on trade management or call us directly.
Q: How can I get a sample to check your quality?
R:After price confirmed, you can require for samples to check quality.
If you need the samples, we will charge for the sample cost. But the sample cost can be refundable when your quantity of first order is above the MOQ
Q: What is your main market?
R:Southeast Asia, South America,Middle East.North America,EU
After-sales Service
1 year warranty for all kinds of products;
If you find any defective accessories first time, we will give you the new parts for free to replace in the next order, as an experienced manufacturer, you can rest assured of the quality and after-sales service.
Established in 1998,DET motor is a professional manufacturer and exporter that is concerned with the design, development and production of motors. We are located in ZheJiang city, with convenient transportation access. All of our products comply with international quality standards and are greatly appreciated in a variety of different markets throughout the world.
We have over 550 employees, an annual sales figure that exceeds USD300,000,000 and are currently exporting 50% of our production worldwide. Our well-equipped facilities and excellent quality control throughout all stages of production enables us to guarantee total customer satisfaction.
As a result of our high quality products and outstanding customer service, we have gained a global sales network CHINAMFG European.
If you are interested in any of our products or would like to discuss a custom order, please feel free to contact us. We are looking CHINAMFG to forming successful business relationships with new clients around the world in the near future.
| Transfer | FOB/CIF |
| Payment | TT/LC/VISA/MASTER |
| Port | ZheJiang /HangZhou/HangZhou/HangZhou |
| Lubrication Style: | Oil-less |
|---|---|
| Cooling System: | Air Cooling |
| Structure Type: | Open Type |
| Compress Level: | Multistage |
| Tank: | 230L |
| Transport Package: | Wooden Box |
| Samples: |
US$ 260/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-12-13